Fostering Undergraduate Students' Disciplinary Learning and Water Literacy

Cory Forbes1,2, Nick Brozovic2,3, Trenton Franz1,2, Diane Lally1, Destini Petit1

University of Nebraska-Lincoln

1School of Natural Resources 2Water for Food Global Institute 3Dept. of Agricultural Economics

RATIONALE

- Water resource use and management is a critical issue in the 21st Century - the “Water Century” - in which “ensuring an adequate quantity and quality of freshwater for sustaining all forms of life is a growing challenge.” (National Science Foundation, 2005, pg. 6)
- These challenges have led to increasing emphasis on systematic STEM education reform at the post-secondary level (National Research Council, 2012)
- Research has shown that water literacy in the United States remains underdeveloped
- Many studies of STEM-informed decision-making have been conducted at the K-12 level (Christensen & Rundgren, 2015; Eggert & Bögeholz, 2009; Grace, 2009; Grace & Ratcliffe, 2002; Gresch et al., 2013; Jime’nez-Aleixandre, 2002; Seethaler & Linn, 2004; Seigel, 2006) but fewer such studies have been conducted with undergraduate students (Halverson et al., 2009; Sadler & Zeidler, 2005)
- More work is therefore needed to understand STEM-informed decision-making about water issues among undergraduate students

CONCEPTUAL FRAMEWORK

- **Water Literacy**: An enhanced capacity, both at the individual and collective levels, to make effective decisions grounded in STEM-informed analyses of complex, real-world challenges associated with socio-hydrological systems
- **Component of science literacy in the Food-Energy-Water Nexus**
- **Grounded in broader perspectives on science literacy**
- **Science education (Bybee, McCrae, Laurie, 2009; Feinstein, 2010; Rudolph, 2014)**
- **Decision sciences (Arval et al., 2004)**

PROJECT LOGIC MODEL

Project Goals

1. **Support undergraduate students’ learning to engage in STEM-informed analyses of socio-hydrological systems through interprofessional design**
2. **Empirical research to better understand the nature of, and strategies to support, undergraduate students’ learning of disciplinary concepts and decision-making competencies**

Outcomes

- **Short-term**: Improved STEM-informed analyses of socio-hydrological systems (students)
- **Long-term**: Empirically and theoretically-informed SCIL 109 course

REFERENCES

- *Jime’nez-Aleixandre, 2002; Seethaler & Linn, 2004; Seigel, 2006) but fewer such studies have been conducted with undergraduate students (Halverson et al., 2009; Sadler & Zeidler, 2005)
- **New, interdisciplinary, introductory-level water course serving both STEM majors and non-majors at UNL**
- **General education course focused on global and local issues related to water and its role in society**
- **Two course objectives:**
 1. Explain fundamental hydrologic concepts and engage in scientific practices, including posing and answering scientific questions, exploring phenomena, analyzing and making inferences from data, and determining validity of conclusions
 2. Engage effectively in principled analysis of and reasoning about socio-hydrologic systems, including their scientific, ethical, social, economic, cultural, and civic dimensions, to make informed decisions about water issues
- **General education requirements**
 - **ACE 84**: Use scientific methods and knowledge of the natural and physical world to address problems through inquiry, interpretation, analysis, and the making of inferences from data, to determine whether conclusions or solutions are reasonable.
 - **ACE 95**: Explain ethical principles, civics, and stewardship, and their importance to society.
- **Course highlights**
 - Use computer-based models and simulations to learn core, introductory hydroscience concepts
 - Engage with contemporary economic, policy, social, and cultural dimensions of water
 - Benefit from expertise of scientific, communications, and industry experts
 - Use structured decision-making frameworks to propose solutions to local, regional, and global water challenges
 - Participate in site-based field trips to local municipal water facilities
 - Work in small-group teams to conduct independent research
 - Present coursework to scientists, policymakers, and stakeholders at the Water for Food Global conference

SCIL/AECN/NRES 109 – Water in Society

RESEARCH

- **DISCIPLINE- and DESIGN-based education research (DBER)**
- **Iterative, empirically-based course development**
- **Research questions**
 1. To what extent do undergraduate students participate in more effective decision-making about socio-hydrological issues? 2. How do undergraduate students engage in decision-making about socio-hydrological issues? Which course- and student-level factors influence their STEM-informed decision-making? 3. Pre-/post-course evaluation: Assessment of core, introductory hydroscience concepts Inventories of Basic Designs (IBD) for General Science Decision making tasks Clinical interviews

REFERENCES

- *Jime’nez-Aleixandre, 2002; Seethaler & Linn, 2004; Seigel, 2006) but fewer such studies have been conducted with undergraduate students (Halverson et al., 2009; Sadler & Zeidler, 2005)
- **New, interdisciplinary, introductory-level water course serving both STEM majors and non-majors at UNL**
- **General education course focused on global and local issues related to water and its role in society**
- **Two course objectives:**
 1. Explain fundamental hydrologic concepts and engage in scientific practices, including posing and answering scientific questions, exploring phenomena, analyzing and making inferences from data, and determining validity of conclusions
 2. Engage effectively in principled analysis of and reasoning about socio-hydrologic systems, including their scientific, ethical, social, economic, cultural, and civic dimensions, to make informed decisions about water issues
- **General education requirements**
 - **ACE 84**: Use scientific methods and knowledge of the natural and physical world to address problems through inquiry, interpretation, analysis, and the making of inferences from data, to determine whether conclusions or solutions are reasonable.
 - **ACE 95**: Explain ethical principles, civics, and stewardship, and their importance to society.
- **Course highlights**
 - Use computer-based models and simulations to learn core, introductory hydroscience concepts
 - Engage with contemporary economic, policy, social, and cultural dimensions of water
 - Benefit from expertise of scientific, communications, and industry experts
 - Use structured decision-making frameworks to propose solutions to local, regional, and global water challenges
 - Participate in site-based field trips to local municipal water facilities
 - Work in small-group teams to conduct independent research
 - Present coursework to scientists, policymakers, and stakeholders at the Water for Food Global conference

This material is based upon work supported by the National Science Foundation under Grant No. DUE-1609598. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation. Contact: Cory Forbes, Fort RUS, Lincoln, NE 68508, USA (cory.forbes@unl.edu).